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Are human cultures distinctively cumulative because they are uniquely
compositional? We addressed this question using a summative learning para-
digm where participants saw different models build different tower elements,
consisting of discrete actions and objects: stacking cubes (tower base) and link-
ing squares (tower apex). These elements could be combined to form a tower
that was optimal in terms of height and structural soundness. In addition to
measuring copying fidelity, we explored whether children and adults (i)
extended the knowledge demonstrated to additional tower elements and (ii)
productively combined them. Results showed that children and adults
copied observed demonstrations and applied them to novel exemplars. How-
ever, only adults in the imitation condition combined the two newly derived
base and apex, relative to adults in a control group. Nonetheless, there were
remarkable similarities between children’s and adults’ performance across
measures. Composite measures capturing errors and overall generativity in
children’s and adults’ performance produced few population by condition
interactions. Results suggest that early in development, humans possess a
suite of cognitive skills—compositionality and generativity—that transforms
phylogenetically widespread social learning competencies into something
that may be unique to our species, cultural learning; allowing human cultures
to evolve towards greater complexity.
1. Introduction
What cognitive processes drive our species’ distinctive ability to aggregate cul-
tural knowledge over time and across generations? There are various answers to
this question, of course. Most empirical research has focused on social learning,
specifically, imitation and teaching (for reviews, see [1–3]). Others have focused
on prosocial and folk psychological skills, such as referential communication,
sharing and theory of mind [4,5]. This suite of domain-specific, socio-cognitive
skills has garnered significant empirical attention because it appears to be
highly developed (if not entirely unique) in humans relative to other social ani-
mals [4,6–8]. Cognitive scientists have only recently begun to systematically
explore how asocial, domain-general skills such as causal and analogical
reasoning along with changes in executive functions allow individuals to intro-
duce innovations into a population’s cultural repertoire [9–13]. Regardless of
exactly how social and asocial processes interact to produce cultural complexity,
results from a majority of studies in the comparative [14,15], developmental [10]
and computational [16] sciences have pointed to differences in fidelity [17] and
breadth [18] of social learning competence between humans and other animals.
According to these arguments, high-fidelity copying is necessary to generate,
preserve and transmit adaptive cultural variants. By contrast, low-fidelity
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(b)(a)

(d)(c)

Figure 1. Tower Building Task. Tower pieces: (a) flat squares and element (b)
linked squares, forming the tower’s apex. Tower pieces: (c) hollow cubes and
element (d ) stacked cubes, forming the tower’s base. During the demon-
stration (e.g. summative imitation), participants saw one model combining
squares (a,b) and another stacking cubes (c,d) in counterbalanced order. In
the original study [24], participants received the demonstrated tower
pieces (unassembled) and were instructed to build the tallest tower possible.
In the present study, during testing, participants received twice as many
tower elements as was demonstrated (cf. figures 2 and 4).
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copying has been shown to result in ‘backward slippage’ or
cultural loss, as adaptive practices are forgotten or replaced
with less adaptive variants [1–3,19].

However, some have challenged these broad claims about
the uniqueness of cumulative cultural evolution (CCE) and the
learning mechanisms that support it [20]. For instance, Gruber
et al. [21] using Mesoudi & Thornton’s [22] ‘core’ (or basic) cri-
teria for CCE1 have pointed to instances of cultural evolution
towards greater efficiency or simplification in various animal
species. Setting aside whether these changes are driven by ‘cul-
tural’ or natural/environmental forces, the evidence provided
by Gruber and colleagues says nothing about the divergent
developmental and evolutionary trajectories of cultures
observed in nature: simplification in the case of animals
versus complexity in the case of humans.

The relative failure of animals to evidence CCE that leads
to more complex rather than simpler cultural products begs
for an explanation and a tractable empirical model. One
possibility suggested by Lewis & Laland [16] is that cultural
complexity is driven by a pair of component cognitive
features, one social, the other asocial: faithful imitation
and representational combination. Subiaul and co-workers
[23,24] have operationalized this idea and referred to this
pair of skills as summative social learning (SSL), encompass-
ing summative imitation and emulation. Both have been
shown to contribute to cumulative learning within [24] and
between individuals [25].

To evaluate SSL, Subiaul & Stanton [24] used a novel
Tower Building Task (figure 1) inspired by the spaghetti
tower of Caldwell & Millan [26] and Price et al.’s [27] tool con-
struction task. In the key manipulation (i.e. summative
imitation condition), different models demonstrated distinct
responses on separate objects that could be combined to pro-
duce an optimal tower. Results showed that relative to an
independent invention group (Baseline), both children and
adults copied the demonstrated responses (stacking cubes
and linking squares) and then, spontaneously combined
them, to produce an unobserved—novel—product. Bauer
et al. [28,29] have independently devised a similar paradigm
that involves the semantic integration of disparate facts pro-
vided by testimony. We have previously referred to these
types of inferences that involve the spontaneous combination
of different types of knowledge provided by others as
‘intuitive invention’ [24].

But imitation and combination might not fully explain the
power and breadth of human cultural evolution. What is
needed is compositionality; that is, the iterative combination
of discrete representations (e.g. about actions, objects and/or
functions) in a goal-directed manner2 [30–33]. Composition-
ality is made possible, first, by how knowledge itself is
represented and, second, by how that knowledge is processed.
For instance, events can be encoded semantically in an
abstract, generic format (a car) or episodically (the pink Cadil-
lac) in a rich, detailed format that includes what (Cadillac),
who (Elvis), where (Memphis, TN, USA) and when (ca
1950s) information [5,34]. These representations can be pro-
cessed vis-a-vis other representations in a variety of ways.
For example, combining existing object representations (e.g.
spear = cutting flake + rod), embedding representations
within each other in an ‘action grammar’ [35–37] (e.g. core
preparation: detach a flake, to prepare to detach a flake, to
prepare to detach a flake…) or by ‘blending’ different
representations (e.g. spork = spoon + fork) [16,38].

Using this framework, the present study builds on the
concept of cultural learning proposed by Tomasello and co-
workers [19,39]. Here, we propose that cultural learning is a
species of social learning characterized by compositionality
and generativity (cf. electronic supplementary material, table
S1). Using the Tower Building Task and SSL paradigm [24]
involving different models [20], we evaluated the hypothesis
that human culture is uniquely cumulative because human social
learning is distinctively compositional by default; appearing early
in development prior to formal instruction [35,40,41]. We contrast
that hypothesis with one where cumulative culture is driven
by human-specific pedagogical practices (e.g. apprenticeships and
schooling) that favour compositionality. To assess whether
human social learning is compositional and generative
throughout development, two studies explored the following:
Do children and adults (i) iteratively extend observed responses
to different or additional exemplars and (ii) combine different
iterative responses to produce a novel—unobserved—product?
If participants represent observed responses discretely and gen-
erically, then they should be able to iteratively extend observed
actions to new exemplars in the imitation condition (where par-
ticipants can discretely represent objects and action) but not the
emulation condition (where whole segments are provided
without actions to help parse them). Moreover, if they are
capable of compositionality, then they should be able to itera-
tively combine responses within and between objects to
produce a novel product. Finally, if this suite of skills represents
a default cognitive mode that is not explicitly taught, preschool
children should perform similarly to college students across
measures of generativity and compositionality.

We refer to the iterative combination and extension of
responses as generative cultural learning or, simply, cultural
learning, including generative imitation and emulation. The
combination of different socially learned generative
responses is referred to as summative cultural learning; an
extension of the term ‘summative imitation’ introduced by
Subiaul et al. [23] (see table 1). See electronic supplementary
material, table S1, for definitions of terms.



Table 1. Description of terms, processes/computations and rules used in the Generative Tower Building Task.

representations and
computations

task features and cognitive components

cubes (to form BASE) squares (to form APEX)

object features cube size-colour: largest-red; second largest-orange;

smallest-green; second smallest-blue

square colour: red; yellow

goals sub-goal: build base by stacking (all) cubes sub-goal: build apex by

linking (all) squares

end-goal: build tallest possible tower by combing subgoals

actions Grab = take hold of object; Rotate = reorient object clock- or counter-clockwise; Balance = set on edge;

Set = place object; Link = connect objects; Repeat = replicate action; End = stop

dependencies AGROUND = on floor, STACK = set on top of, RIDGES = by/in ridges; EDGES = by/on edges; FLAT (squares) =

lay flat; WHEN = temporal-causal structure

executive functions select and integrate: objects, features, goal, sub-goal, actions, dependencies
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The pre-registration of this study can be found here:
https://aspredicted.org/mb3vb.pdf. See electronic sup-
plementary material for descriptions and justification for
procedural deviations.
2. Experiment 1
(a) Methods
Participants. A total of 101 adults (females = 50) with a mean
age of 23.27 years (s.d. = 7.63) were tested on three trials in
three independent conditions: Independent Invention or Base-
line (n = 33), Imitation (n = 32) and Emulation (n = 36) using a
mixed between-/within-subject repeated design (see measures
below). Participants were recruited and tested in the Estelle
and Melvin Gelman Library on the Foggy Bottom Campus
of the George Washington University in Washington, DC fol-
lowing GWU IRB-approved procedures. The participant pool
was diverse (greater than 50% non-white). See electronic
supplementary material for demographic details.

Experimental task. The Tower Building Task for adults
(figure 1). See electronic supplementary material for details.

Learning phase. Adults were randomly assigned to one of
three independent learning conditions. Two of these involved
a video demonstration (30 s in length) before testing like the
procedures described in Subiaul & Stanton [24]. See electronic
supplementary material for details.

The two demonstration groups were as follows:

— Summative imitation (imitation): This group saw two
models. One model built the tower base by rotating and
stacking two cubes atop each other. Another model
built the tower’s apex by combining two flat squares.
However, participants never saw these two tower
elements—base and apex—combined. See electronic sup-
plementary material for more details. A sample video
demonstration can be found here: https://www.you-
tube.com/watch?v=S0UWqwtujgo.

— Summative emulation (emulation): Participants saw differ-
ent models and demonstrations for the base and apex
as was the case with the Summative Imitation group.
However, the actions used to create each tower element
by each model were removed. Consequently, participants
saw the unassembled pieces for each tower element
immediately followed by the completed tower element.
The emulation conditions allowed us to evaluate whether
generativity could be achieved by linking large segments
or wholes, rather than discrete elements. See electronic
supplementary material for more details. A sample
video demonstration can be found here: https://www.
youtube.com/watch?v=-w0cGOui8EI.

The third group served as an independent invention or
baseline—control—group:

— Independent invention (baseline): This group received no
social input. See electronic supplementary material for
more details.

Testing phase. During testing all participants were given
twice the number of tower pieces seen in the video: four
squares and four cubes. They were then instructed to build
the tallest possible tower, without collapsing, using all the
pieces. There was no time limit. Upon completing, an exper-
imenter measured the tower from base to apex. If participants
did not build an optimal tower (cf. figure 2), towers were dis-
assembled and participants were given additional trials (up
to 3) to produce an optimal tower. No additional demon-
strations were provided. See electronic supplementary
material for more details.

(i) Measures and video coding procedures
Participants’ responses were all coded by research assistants
not involved in data collection. A coding template with 67
different responses was used to categorize each of the
responses made by participants. We evaluated two continuous
repeated measures, including tower height and duration of
tower building across Trials 1–3 within-subjects as well as
between-subjects (i.e. across learning conditions. We also
measured various non-parametric (between-subjects) target
responses described below. Inter-rater reliability was high for
all measures (0.99). See electronic supplementary materials.

The non-parametric measures for cultural learning and
summative cultural learning were coded as present (1) or
absent (0).

https://aspredicted.org/mb3vb.pdf
https://www.youtube.com/watch?v=S0UWqwtujgo
https://www.youtube.com/watch?v=S0UWqwtujgo
https://www.youtube.com/watch?v=-w0cGOui8EI
https://www.youtube.com/watch?v=-w0cGOui8EI


(a)

(b) (c) (d)

Figure 2. Adult Tower Building Task. (a) Tower pieces consisted of cubes and
squares. Cubes could be stacked to form the tower base element. Squares
could be linked together via ridges to form the tower apex element. The
apex could then be affixed to the base via the cube’s ridges resulting in opti-
mally tall towers (b,d ). However, towers varied in structural soundness:
optimal stacking on a solid surface (b), sub-optimal stacking by balancing
cubes on edges (c) or consisting of optimal and sub-optimal elements (d ).
Note that during demonstration, participants saw the green cube stacked
atop the blue cube and a red square linked with the yellow square (cf.
figure 1).
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(ii) Cultural learning: generative action sequence (tower element)
Stacking (base)
— Optimal. Rotating and stacking a novel cube (red or

orange) atop the solid surface of a rotating cube (e.g.
figure 1a). Participants received a generative stacking
score of 1 if they stacked three cubes (two demonstrated
cubes, plus one of the undemonstrated cubes). They
scored 2 if they stacked all four cubes. Scores ranged
from 0 to 2. Scores of 2 were re-coded as 1, resulting in
a binary score (1/0).

— Sub-optimal. Stacking cubes along their surface/edge
(making them unstable and prone to collapse). Children
received a generative stacking score of 1 if they stacked
three cubes (two demonstrated cubes plus one of the
undemonstrated cubes). They received a score of 2 if
they stacked all four cubes. Scores ranged from 0 to
2. Scores of 2 were re-coded as 1, resulting in a binary
score (1/0).

Linking (apex)
Linking two squares (e.g. figure 1b) with additional squares
(undemonstrated). Again, scores ranged from 0 to 2. Scores
of 2 were re-coded as 1, resulting in a binary score (1/0).
Although some participants inefficiently linked squares,
these instances of sub-optimal linking did not result in a func-
tioning element (i.e. collapsed). For this reason, only optimal
linking is reported.

(iii) Summative cultural learning: generative tower, including
both tower elements and action sequences

Optimal (figure 2b). Rotating the four given cubes to their
sides and stacking them on top of one another to form
the tower’s base. Alternatively, the top cube may be
stacked with its ridges facing upward. Combining the four
squares and connecting them to the top cube’s ridges.
Coded as 1 or 0.
Sub-optimal (figure 2c,d ). Sub-optimally stacking the four
cubes as the base (e.g. cubes balanced on edges with ridges
facing up or down) and affixing the four linked squares to
the top cube. Or a ‘blended’ tower that consisted of optimal
and sub-optimal stacking methods that were blocked or inter-
leaved with other tower elements (e.g. linked squares). Coded
as 1 or 0.

Briefly, measures qualified by the term ‘generative’ rep-
resent iterative combinations (or a combination of iterative
responses). For instance, linking squares involves a single
combination of two squares. Whereas generative linking (of
squares) involves the iterative combination of three or more
squares. See electronic supplementary material, table S1.

The following measures were continuous:
Tower height (height): Changes in tower height across trials

served as a proxy for cumulative cultural learning within-
subjects. Towers were measured from base to apex in centi-
metres (cm). Only towers that stood by themselves were
measured. Maximum tower height: 50 cm. To compare per-
formance across conditions with minimal data loss, if
participants produced an optimally tall tower (i.e. stacking
optimally or sub-optimally) on Trial 1, tower height (along
with all other measures) was copied for Trials 2 and 3.

(iv) Statistical analyses
Statistical analyses were conducted in R v.4.2 [42] using the
stats package in Rstudio [43]. Non-parametric tests (chi-
squares) were used on categorical learning measures. The
Holm [44] and Bonferroni correction procedures were used
to correct for multiple chi-squares and ANOVA post hoc
tests using the RVAideMemoire package [43] and JASP [45].
All p-values were two-tailed. Unless stated otherwise, only
first trial responses while building the tower (i.e. process)
are reported. Additional exploratory analyses are available
in electronic supplementary material. Preliminary analysis
showed that neither age nor gender identity correlated with
any of the dependent measures. So, unless otherwise stated,
these variables were excluded from analysis.

Data files can be found in the OSF website: https://osf.
io/pjfq2/.

(b) Results
(i) Did adults evidence cultural learning: producing generative

stacking (base) and linking (apex) responses?
Generative stacking (base)—optimal: On Trial 1, there were sig-
nificant differences between learning conditions—baseline,
imitation, emulation—(x22,101 ¼ 11:58, p < 0.01). Only partici-
pants in the imitation condition made more generative
stacking responses than participants in the independent
invention—baseline—condition (Bonferroni: p < 0.01). No
other contrast was statistically significant. Sub-optimal:
Groups did not differ (x22,101 ¼ 0:32, p = 0.85).

Generative linking (apex): On Trial 1, differences bet-
ween learning conditions were as not statistically significant
(x22,101 ¼ 4:20, p = 0.12).

Results are summarized in figure 3b.

(ii) Did adults evidence summative cultural learning: combining
generative stacking (base) and linking (apex) responses?

Generative tower—optimal: On Trial 1, differences between
learning conditions were significant (x22 ¼ 8:6, p = 0.01).

https://osf.io/pjfq2/
https://osf.io/pjfq2/
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Figure 3. Results for Experiments 1 (adults) and 2 (children). Rows: (a) different learning conditions, (b) results for building individual tower elements (base, apex),
(c) different towers. Columns: (i) summative imitation (imitation), (ii) summative emulation (emulation), (iii) independent invention (baseline). Note. *p < 0.05, +
p < 0.10 represent differences from baseline. Errors are summarized in figure 5.
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Specifically, more participants in the imitation condition pro-
duced an optimally tall tower consisting of generative
stacking and linking elements than baseline participants
(Bonferroni: p < 0.05). No other contrast was statistically sig-
nificant (all p > 0.10). Sub-optimal: On Trial 1, differences
between learning conditions were not statistically significant
(x22 ¼ 1:57, p = 0.46).

Results are summarized in figure 3c.
To explore the role that age, sex and condition have in

generative cultural learning, we examined predictors of our
dependent variables using GLMs (generalized linear mixed
models). We created GLMs that included condition (baseline,
imitation, emulation) and age as our predictor variables. We
did not include trial number as a factor because it
significantly correlated with condition (r = 0.31, p < 0.01).
(iii) What factors predict generativity?
Generative stacking (base)—optimal. In addition to the intercept,
there was a significant effect for the imitation condition (OR =
8.81, p < 0.01). The odds of optimally stacking cubes genera-
tively in the imitation condition were 8.81 times greater than
the odds in Baseline (i.e. 8.81 (imitation) × 1 (baseline)), or
881% more likely compared to baseline. There was also a mar-
ginally significant trend for emulation (OR= 3.84, p = 0.06)
relative to Baseline; being in the emulation condition increased
the odds of generatively stacking cubes (optimally) approxi-
mately 4 times, or 384% more likely compared to Baseline.
No other predictor or interaction was significant. Sub-optimal:
The model was not significant; no predictor or interaction
was significant. Results are summarized in electronic
supplementary material, tables S1 and S2.

Generative linking (apex): Imitation was marginally signifi-
cant (OR = 2.64, p = 0.06), indicating that relative to Baseline,
being in the imitation condition increased the odds of genera-
tive linking, on average, 2.64 times, or 264% more likely
compared to Baseline. Results are summarized in electronic
supplementary material, table S3.

(iv) What factors predict tower types?
Generative tower—optimal: The model produced a main
effect for the imitation condition (OR = 8.34, p = 0.012).
Specifically, the odds of participants producing the optimal
tower in the imitation condition was 8.34 times greater than
the odds in baseline, or 834% more likely compared to Base-
line. No other predictor or interaction was statistically
significant. Sub-optimal: Only the intercept was statistically sig-
nificant. However, age by condition interaction approached
significance (OR= 1.25, p = 0.08); the odds of producing the
sub-optimal tower increased 1.25 times with each additional
year in age in the imitation condition relative to the odds in
Baseline, or 125% more likely compared to Baseline.
No other predictor or interaction was significant. Results
are summarized in electronic supplementary material,
tables S4 and S5.
(v) Is there evidence of cumulative learning: tower height?
Tower height: To evaluate within-subject cumulative learning,
we performed a repeated measures ANOVA that included
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Trial Height as the dependent variable with three levels
corresponding to the three trials. Because the test of sphericity
was not met (Mauchly test of sphericity: trial height,
W = 0.876, approximate x22 ¼ 12:96, p < 0.01), we used the
Greenhouse–Geisser correction procedure. There was an
effect for trial number (F1.78,174.22 = 41.71, p < 0.01). Towers in
T1 were significantly smaller than in T2 (Pholm = 0.001)
that, in turn, were smaller than towers in T3 (Pholm = 0.02).
There was also a main effect for each condition (F2,98 = 5.17,
p < 0.01). Towers in Baseline were smaller than those in
Imitation (Pholm = 0.005), but not Emulation (Pholm = 0.15).
Tower height in the Emulation and Imitation conditions did
not differ (Pholm = 0.15). The trial-by-condition interaction
was not significant (F3.56,174.22 = 0.83, p = 0.50). Results are
summarized in electronic supplementary material, figure S1
and table S6.
Soc.B
290:20222418
(c) Discussion
We found significant evidence of imitation (but not emula-
tion) among adults, consistent with prior results [24]. Here,
we also found evidence of generative cultural learning.
Specifically, there was evidence of generative imitation. Partici-
pants in the imitation (but not emulation) condition produced
more generative stacking and linking responses than partici-
pants in the independent invention (Baseline) group (cf.
figure 3b), although these differences were only statistically
significant for stacking responses. There was also evidence
of summative cultural learning. When compared to Baseline,
more adults in the imitation (but not emulation) condition
combined generative stacking and linking responses to form
an optimally tall tower (figure 3c). We also found evidence
of cumulative learning within subjects. Across conditions,
towers became taller with each additional trial. However,
this effect was most pronounced in the imitation condition,
relative to other conditions, including emulation (cf. elec-
tronic supplementary material, figure S1). Exploratory
analysis using GLMs that included various predictors and
their interactions rarely produced significant effects besides
those for condition.

In an earlier study using this same task [24] we showed
that adults overimitated stacking (base) and linking (apex)
responses, consistent with episodic encoding. The results
from the present study provide evidence that adults in the
imitation condition represented demonstrations generically
as well. That is, cubes, in general, can be stacked as demon-
strated; squares, in general, can be linked and/or things
with ridges can be combined (cf. table 1: goals, actions,
dependencies). This conclusion is supported by adults’ gen-
erative and summative responses across measures (i.e.
figure 3b,c) and successively taller towers (electronic
supplementary material, figure S1).

Performance in the emulation condition was relatively
poor, replicating previous results [24]. These results confirm
that end-state information alone lacks the relevant information
necessary for producing discrete, generic—semantic—
representations; or, at the very least, it appears very difficult
to do so. Here, the end-state emulation condition favoured
more episodic or holistic representations, as adults in this
condition only saw tower elements, not the discrete actions
that produced them (cf. table 1: actions, dependencies). Such
holistic or episodic representations failed to produce significant
generative responses (figure 3c). These results cast doubt on
any strong claim that holistic representations play a significant
role in cultural evolution.

Adults’ generative as well as summative cultural learning
skills in the imitation condition beg the following question:
Do young, preschool age children with little to no formal
schooling evidence similar levels of compositionality and
generativity? Or are such skills themselves late-developing
culturally learned products? Experiment 2 directly addressed
these questions by testing preschoolers using the same task
and analogous procedures.
3. Experiment 2
(a) Methods
Participants. A total of 66 children (females = 30) with a mean
age of 5.09 years were tested in two independent conditions:
Baseline (n = 30) and Imitation (n = 32) (s.d. = 0.86). This
experimental design represented a deviation from the pre-
registration plan, which included an emulation group. All
participants were recruited and tested in the National Build-
ing Museum in Washington, DC following GWU IRB-
approved procedures. Forty-one per cent of participants
belonged to a minority group. See electronic supplementary
material for demographic details.

Experimental task. The procedures used were identical to
those of Experiment 1 with the following exception: during
testing, children were given two green cubes (6 cm) and
two blue cubes (7 cm). The maximum tower height was
44 cm (figure 4).

Learning phase. Children were randomly assigned to one
of two independent learning groups: Summative Imitation
and Baseline.

Demonstration phase. The same as Experiment 1, except
that demonstrations during the summative imitation con-
dition involved two live demonstrations by female research
assistants showing children how to build the two tower
elements, base and apex, using the same counterbalancing
positions and script as in Experiment 1. And in contrast to
adults in Experiment 1, children in the demonstration con-
dition observed three live demonstrations (each approx.
1 min in length) before testing.

To summarize, the children’s task differed from that of
adults (described in Experiment 1) in the following ways.
(i) Children saw live demonstrations (rather than a video
recording), (ii) that were repeated three times prior to testing
(rather than a single demonstration). (iii) During testing, chil-
dren received two identical blue cubes and two identical
green cubes (rather than four different cubes varying in size
and colour) and (iv) only given only one response trial
(instead of three).
(i) Measures and video coding procedures
Because children only had two different cubes (two blue and
two green), a child-specific coding sheet was used. Other-
wise, measures and coding procedures were identical to
those described above for adults. Inter-rater reliability was
high (0.99).

Testing phase. Same as Experiment 1, except that
children were only given one trial to build the tallest possible
tower. This represents another deviation from the pre-regis-
tered procedures. This procedural change was necessitated



(a)

(b) (c) (d)

Figure 4. Child Tower Building Task. (a) Tower pieces consisted of cubes and
squares. Cubes could be stacked to form the tower base element. Squares
could be linked together via ridges to form the tower apex element. The
apex could then be affixed to the base via the cube’s ridges resulting in opti-
mally tall towers (b–d). However, towers varied in structural soundness:
optimal stacking on a solid surface (b), sub-optimal stacking by balancing
cubes on edges (c) or consisting of optimal and sub-optimal elements (d ).
Note that during demonstration, participants saw the green cube stacked
atop the blue cube and a red square linked with a yellow square (cf.
figure 1).
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Figure 5. Different types of errors made by children and adults. Stacking
errors: squares were placed flat atop or below cubes (or other squares). Nest-
ing errors: smaller cubes nested inside larger cubes or squares nested inside
larger cubes; both nesting and stacking errors failed to add to tower height
(i.e. sub-optimal height). Balance errors: square balanced on edges of another
cube or square or cube balanced on the edge of another cube (sub-optimal
base). Balance errors increase tower height but at the expense of structural
stability (i.e. sub-optimal structure). The graph shows the proportion of chil-
dren and adults making each error type (left axis). Black diamonds
correspond to the sums of those errors (right axis).
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by children’s overall poor performance during testing and
subsequent frustration with the task, precluding additio-
nal testing. See electronic supplementary material for
additional details.

For children, target towers were any tower (with optimal
or sub-optimal base) that measured at least 44 cm and could
stand by itself. Seven participants’ (three Baseline, four Imita-
tion) tower height measures were imputed with the mean
tower height of the respective condition.
(ii) Between-study measures
Error type. Type of error—Stacking, Nesting, Balance
(figure 5)—on the first trial.

Error type count. A count measure of the total number of
error types made (range 0–3) by participants.

Generative score. To estimate generative cultural learning,
we produced a composite score of the total number of genera-
tive responses produced by adults (Experiment 1) and
children (Experiment 2) while building tower components
(base and apex). We defined generativity as the application
of a demonstrated response to novel exemplars. For example,
rotating and stacking (optimally or sub-optimally) the two
new cubes (range of score: 0–2) and combining the third
and fourth flat squares with the first and second that were
demonstrated (range of score: 0–2). Total possible range of
scores: 0–4.
(iii) Statistical analyses
Statistical analyses were the same as Experiment 1, except
corrections were not used with chi-square tests since children
only had two conditions, Baseline and Imitation. Because age
and gender correlated with at least some of the dependent
measures, we included them in all models.

Data files can be found in the OSF website: https://osf.
io/pjfq2/.
(b) Results
(i) Did children evidence cultural learning: producing generative
stacking (base) and linking (apex) responses?

Generative stacking (base)—optimal: There were significant
differences between the independent invention (baseline)
and imitation learning conditions (x21 ¼ 10:91, p < 0.01). Sub-
optimal: There were no significant differences between learn-
ing conditions (x21 ¼ 0:002, p = 0.96). Generating linking
(apex): Differences between learning conditions were signifi-
cant (x21 ¼ 40:34, p < 0.05). Children in the imitation
condition generatively linked squares more often than those
in Baseline. Results are summarized in figure 3b.

(ii) Did children evidence summative cultural learning:
combining generative stacking (base) and linking (apex)
responses?

Generative tower—optimal: Differences between imitation and
baseline were marginally significant (x21 ¼ 2:68, p = 0.10).
Specifically, there was a statistically significant trend for
more children in the imitation condition to produce an opti-
mally tall tower consisting of generative stacking and
linking elements than children in baseline. Sub-optimal: Differ-
ences between learning conditions were not statistically
significant (x21 ¼ 0:29, p = 0.59). Results are summarized in
figure 3c.

(iii) What factors predict generativity?
To explore the role of age and gender in generative cultural
learning, we created GLMs for children that included
age, gender and condition (baseline, imitation). Gender was
included because preliminary data analysis showed it
correlated with performance in some measures.

Generative stacking (base)—optimal: The imitation condition
was significant (OR = 17.8, p < 0.01); when compared to the
odds in Baseline, children’s odds of generatively stacking
cubes were 17.8 times greater in the imitation condition, or

https://osf.io/pjfq2/
https://osf.io/pjfq2/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222418

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 M

ay
 2

02
3 
1780% more likely compared to Baseline. No other effect (e.g.
age, gender) or interaction was significant. Results are sum-
marized in electronic supplementary material, table S12.
Sub-optimal: There were no significant predictors or inter-
actions in the model. Results are summarized in electronic
supplementary material, table S12.

Generative linking (apex): The intercept was significant,
and there was a main effect for Condition (OR = 3.51,
p < 0.05), where imitation > baseline. When compared to the
odds in Baseline, the odds of children generatively linking
squares were 3.5 times greater in the imitation condition, or
351% more likely compared to Baseline. None of the other
predictors (e.g. age, gender) or interactions in the model
were significant. Results are summarized in electronic
supplementary material, table S13.

(iv) What factors predict tower types?
Optimal and sub-optimal:None of the predictors or interactions
in the models were significant. Results are summarized in
electronic supplementary material, tables S14 and S15.

(v) Is there evidence of cumulative learning: tower height?
Mean tower height in the imitation condition (M = 29.20,
s.d. = 8.75) was greater those in the Baseline condition (M =
25.70, s.d. = 7.38; t60 = –1.69, p < 0.05). GLMs including age,
gender and condition as factors showed that only the inter-
cept was significant (Estimate = 15.37, p < 0.05). However,
gender (Estimate = 3.73, p = 0.07) and the imitation condition
were marginally significant (Estimate = 3.7, p = 0.07), indicat-
ing that male children built towers that were, on average,
3.7 cm taller than those built by females. Likewise, children
in the imitation condition built towers that were 3.7 cm
taller than those in baseline. There were no other significant
predictors or interactions (cf. electronic supplementary
material, table S16).

(vi) Did children and adults make similar errors when building
the tower?

Given the similar procedures in Experiments 1 and 2, we
were able to compare children’s and adults’ errors as well
as their propensity for generativity.

To answer this question, we created GLMs with a bino-
mial error distribution and logit link function that included
one of three different types of errors, Balance, Nesting,
Stacking (figure 5a), as the dependent measure and popu-
lation (Child, Adult) and condition (Baseline, Imitation) as
the predictors. All models included Population (children,
adults), Condition (baseline, summative imitation) and the
interaction of Population and Condition as predictors. Only
baseline and summative imitation were analysed as they
were the only two conditions shared by both populations
across experiments.

Population stacking errors: The analysis of Stacking
Errors showed a significant effect for condition (Imitation,
OR = 0.25, p < 0.05). The odds of making a stacking error
in Baseline were 4 times greater than the odds in imitation,
or 400% more likely in Baseline compared to Imitation.
Results are summarized in electronic supplementary material,
table S18.

Population nesting errors: The GLM for Nesting Errors
produced a significant condition by population interaction
(figure 5: OR = 6.85, p = 0.01). For participants in the
imitation condition, the odds of making a nesting error
were almost 7 times greater for children than the odds
for adults, or 685% more likely for children compared to
adults. Results are summarized in electronic supplementary
material, table S19.

Population balance errors: An analysis of Balance Errors
showed a main effect for condition (OR = 0.30, p = 0.02),
where the odds of making a balance error in Baseline
was 3.33 times greater than the odds in Imitation, or 333%
more likely in Baseline compared to Imitation. There
was also a main effect for population (Children, OR = 0.29,
p = 0.02), with the odds of adults making a balance error
being approximately 3.5 times greater than the odds of chil-
dren making that same error, or 350% more likely for
adults compared to children. The population by condition
interaction was not statistically significant. Results are sum-
marized in figure 5b and electronic supplementary material,
table S20.

To evaluate whether children and adults made the same
number of errors, we used a GLM that included Error
Type Count (counts of each error type) as the dependent vari-
able and population (child, adult), condition (baseline,
imitation) as well as their interaction as factors. A Poisson dis-
tribution was used because the sum of measures is a count
measure and the identity link, as the results were above
zero. Condition was a significant predictor of errors (Esti-
mate =−0.203, Z =−0.651, p < 0.01). Specifically, participants
(children and adults) in the imitation condition made
−0.086 fewer scale errors than those in Baseline. Neither
population nor the condition by population interaction
were statistically significant, though this trend was more
pronounced in adults than in children. Results are summar-
ized in figure 5b and electronic supplementary material,
table S21.

(vii) Did children and adults evidence equivalent levels of
generativity?

Population generativity score: A linear model using the gener-
ativity score as the dependent variable and population
(child, adult) and condition (baseline, imitation) as predic-
tors showed a main effect for the imitation condition
(Estimate = 1.25, p = 0.001), where participants in the imita-
tion condition were 1.25 scale points higher on their
generativity score than those in Baseline, on average. Neither
population nor the population by condition interaction was
statistically significant (cf. electronic supplementary material,
table S22).

(d) Discussion
Like adults in Experiment 1, children evidenced generative
cultural learning across measures, extending the stacking of
cubes and linking of squares to additional cubes and squares
(i.e. generative base and apex, respectively). However, unlike
adults, most children struggled to combine these generative
tower elements to form an optimal tower (cf. figure 3c) with-
out making the tower collapse. These errors were more
indicative of fine motor (i.e. action) and motor coordination
(i.e. dependency) difficulties than representational difficulties
(cf. table 1). Consider that in the present study, almost
20% of children (1 : 5) combined the generative tower
elements (base, apex) and demonstrated summative cultural
learning. But in a previous study [24], 42% of children
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(3 : 7) combined tower elements. But that earlier task included
just four tower pieces. The present task included eight or
twice as many. Nonetheless, children appear to have encoded
what they witnessed generically as evidenced by their
generative responses.

We do not have data that children—like adults—overimi-
tate3 on the Tower Building Task. However, many studies
have found that children this age regularly overimitate
across a variety of tasks [46]. That evidence, together with
results from this study, suggests that children may also be
capable of producing multiple representations during encod-
ing, as appears to be the case with adults. These different
representations would be available during retrieval to
achieve a variety of goals. However, additional research is
required to verify that suspicion.

Replicating earlier work with a more difficult version of
the Tower Building Task [24], we found evidence that chil-
dren and adults, despite the wide gulf of experience,
performed similarly on composite measures (generative
score, errors) collected in both studies (imitation, baseline).
Those results are inconsistent with hypotheses that might
argue that the compositional nature of human cultural learn-
ing is dependent on specific pedagogical practices (e.g. [47]).
Instead, results indicate that performance in the generative
version of the Tower Building Task was minimally affected
by formal schooling. We cannot stress this last point
enough. Formal schooling is a meta-cognitive gadget; a cog-
nitive gadget that produces cognitive gadgets. Minimally,
schooling should replace, modify and/or optimize early
acquired gadgets. However, that was not the case. Perhaps
the Tower Building Task primes folk physical (sensory and
perceptual) biases known to be resistant to formal education
[48]. While such biases may explain the continuity observed
in errors made by children and adults (cf. figure 5), it is
unclear whether they also explain the observed similarities
in generative responses.
4. General discussion
For many, compositionality is what makes cognition, and
all its products, generative, creative and seemingly bound-
less. In the archaeological record, evidence of what appears
to be iterative combinations of spears with different
blades affixed at varying orientations (presumably with
unique functions) dates back to at least 70 000 years ago
[49]. Other iterative—compositional—behaviours involving
ochre-use applied to different objects (again, presumably,
for different functions) date as far back as 300 000 years
ago [50], a time associated with the first anatomically
modern humans [51]. None of these behaviours are
evident in the diverse and widespread cultures of great
apes, for example [52,53]. Moreover, experimental studies
summarized by Poti & Parenti [54] show that non-human
apes, in contrast to young human children, rarely (if ever)
show iterative exploratory play such as stacking objects to
make a tower or linking objects in sequences. These are decid-
edly odd behaviours that are, nonetheless, common in the
earliest play of human children at around 18 months [55],
soon after two other uniquely human milestones, walking
and talking.

Here, we sought to evaluate the hypothesis that human
culture is uniquely cumulative because human social learning is
distinctively compositional by default; evident early in development
prior to formal schooling [35,40,41]. To test this hypothesis, two
studies measured whether (i) participants iteratively extend
observed actions to new exemplars and (ii) combined those
iterative responses within and between objects to produce
novel products. To evaluate whether these cultural learning
skills are deployed by default, without formal or explicit
instruction, we compared adults’ performance to that of
preschool age children.

Both Studies 1 and 2 replicated and extended prior results
[24] by showing generative cultural learning in adults and chil-
dren, respectively. Specifically, children and adults showed
generative imitation across two different models operating
on two distinct object sets (figure 1: cubes versus squares).
Children, like adults, showed significant levels of generativity
when building the tower’s base and apex (figure 3b). However,
unlike adults, this effect was only marginally statistically sig-
nificant (figure 3c). Nonetheless, there were remarkable
similarities between children’s and adults’ performance
across learning measures. Composite measures capturing
both populations’ errors and generativity produced few con-
dition by population interactions. These results, coupled
with those showing overimitation [24,46], where individuals
faithfully copy all demonstrated responses whether meaning-
ful or not, suggest that adults and children might be
encoding observed responses in multiple formats: (i) episodic
encoding in end-state emulation (Studies 1 and 2 [24]), overi-
mitation (adults, Study 1 [24]) and ‘full’ imitation learning
conditions (Study 2 [24]) versus (ii) semantic/generic encoding
in summative imitation conditions and response phase (pre-
sent study). If true, access to multiple representations, along
with the ability to judiciously select among them, may explain
species differences in social learning.

Still, the results comparing children and adults should be
interpreted cautiously given the differences in procedures
used in Experiments 1 and 2. These procedural differences
may have produced distinct representations and inferences
in the two populations. However, in both cases, the
additional pieces presented to children and adults were
novel relative to what was demonstrated. For instance, chil-
dren observed how to stack the smaller green cube atop the
larger blue cube (figure 1) but received no information
about how to stack two blue cubes (figure 4). Adults had a
similar (but harder) problem. They saw how to stack the
blue and red cubes but had to infer how to stack the two
new cubes that differed in size and colour.

Another limitation of the study is that the motor demands
inherent in the generative version of the Tower Building Task
may have exceeded the capabilities of preschoolers. These
task features may have limited their ability to combine the
generative responses (stacking and linking) they produced.
Admittedly, basic representational and executive functioning
limitations [10] cannot be ruled out. However, the main chal-
lenges appeared to be difficulties selecting and coordinating
motor responses necessary for fitting or combining objects
[56–58]. These motor difficulties limit our ability to fully
appreciate children’s earliest generative and summative cul-
tural learning competence. For these same reasons, other
animals, including primates, might experience difficulties
with this task. See electronic supplementary material for
additional details.

We also do not want to overlook an important (and sur-
prising) result: the poor performance of adults in the
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emulation condition, here and in prior studies [24]. Adults in
the emulation learning condition struggled producing genera-
tive responses (figure 3b,c). Moreover, the towers they
produced did not become progressively taller relative to
those in Baseline (electronic supplementary material, figure
S1). These results indicate that generative cultural learning is
significantly facilitated by learning contexts that allow for dis-
crete representations of objects, actions and their affordances
as was the case in the imitation condition. By contrast, gener-
ativity is hampered when only object segments or ‘chunks’ can
be represented without any opportunity for parcellation as
was the case in the emulation condition. These results suggest
that the generativity of human cultural learning is driven
primarily by compositional rather than holistic processing.
Although, we want to emphasize that these processes are
unlikely to be mutually exclusive (e.g. [59,60]). Still, we
hypothesize that in problem-solving social learning contexts,
the more opportunities there are to form discrete represen-
tations, the greater the opportunity for generativity.

These results reframe the debate about the role of imita-
tion and emulation in cultural evolution [14,25,61]. It is not
just that non-human animals fail to faithfully copy others’
responses. The main problem is that whatever is copied is
not compositional, hence, not generative. That is, whatever
is learned is not intuitively combined or integrated in the
individual’s cultural repertoire as is the case with human
children and adults alike [24,28].

Surprisingly few studies have explored the types of
representations and cognitive processes underlying perform-
ance in problem-solving and social learning tasks, including
generative (recursive, iterative), analogical [62] and inferen-
tial/derivational [28] processes. Future studies may want to
identify the types of representations and processes driving
CCE [63]. Specifically, studies might want to understand
the frequency of different iterative processes, the contexts in
which they are most evident, their relative adaptiveness
and/or functionality and whether the archaeological record
provides reliable signals by which to identify and discrimi-
nate between them.

Finally, we do not want to overlook the fact that all our
participants were from a western, educated, industrialized,
rich and democratic (WEIRD) culture [64]. Accordingly,
some might be tempted to argue that the Tower Building
Task measures a non-functional, culture-specific skill. But
creating tall, stable, structures requires folk physical concepts
likely to be universal [48,65]. Similar physical concepts are
inherent in dwellings like igloos and teepees, tools like lad-
ders and stools, as well as activities like tree-climbing. Still,
these are assumptions that require empirical validation.
5. Conclusion
Social learning and behavioural traditions are widespread in
the animal kingdom. Yet, humanity’s imitative skills and
open-ended cumulative cultural learning abilities are unpar-
alleled. Explaining such discontinuities is a major challenge
in the cognitive sciences. To date, most cumulative cultural
learning research has focused on individual and population
characteristics, different social and informational contexts
and copying fidelity. Few have considered the underlying
cognitive representations [66] and necessary computations
that turn social learning (or group-specific traditions) into
cultural learning (or cumulative culture). That is, open-
ended, generative responses that are compositional, accumu-
lating within individuals during their lifetime and remaining
in their population across generations [67,68].

Using a Tower Building Task in a summative learning
paradigm, we showed that children and adults alike appear
to encode demonstrated responses by different models gener-
ically (and perhaps, episodically, as well). During recall,
participants appear to use these different representations to
extend the limited knowledge they observed to novel exem-
plars. This compositional process resulted in generative
responses that were both novel and more complex than
what was witnessed.

Although laboratory animals may be trained to do one or
more of these actions or even acquire some of these skills [69–
71] humans engaged in these behaviours spontaneously, with
little to no explicit training. Moreover, unlike other animals,
humans do not use these skills in isolation or in restricted
task domains. Instead, the compositionality of knowledge
[30,31,72] appears to be humanity’s default cognitive mode;
a habit of thought that operates across domains in a see-
mingly open-ended manner; one that develops early in
humans but not in other primates [54]. These suites of cogni-
tive skills (i.e. representations of varying formats that are
compositional) may explain why human cultures do not
just evolve towards greater efficiency [21] but also towards
increasing complexity [67] sometimes within a single gener-
ation. Greater empirical attention to how cultural
knowledge is encoded and processed may be necessary to
answer whether the observed similarities between human
and animal cultures are superficial or brain deep.
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Endnotes
1See electronic supplementary material for additional details.
2Note that the goal may be focused but exploratory (e.g. guessing
someone’s password randomly).
3Subiaul and Stanton operationalized overimitation as copying sub-
par stacking (medium–large–small cube) or linking squares using
an alternating colour rule (red–yellow–red square).
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