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A B S T R A C T   

Humanity's ability to conquer every corner of the planet rests on our inventiveness. But is this inventiveness best explained by individual problem-solving skills or by 
our species' exceptional social learning abilities? Using a tower-building task, we show that, on average, 3% of 4–6 year old children (n = 180) and adults (n = 192) 
independently combined tower pieces to produce the most optimal tower possible, confirming that preschool age children and adults alike are poor independent 
inventors. Yet, after observing one or more models generate tower elements separately, both children and adults reproduced the demonstrated elements and 
spontaneously combined them, producing a novel (unobserved) tower of optimal height, evidence of intuitive invention by summative imitation. These results 
challenge folk concepts of innovation and corroborate those from mathematical models showing that our species' inventiveness generally arise from social learning 
rather than individual insights. So, rather than being sui generis, human inventions are, broadly, communis generis.  

1. Introduction 

Humans are particularly innovative. But when compared to other 
animals, human innovations are further distinguished by the fact that 
they evolve, increasing in complexity and adaptiveness over time 
(Henrich, 2016; Laland, 2017; Mesoudi, 2011). What explains such 
cumulative cultural evolution? This question has vexed scientists from 
fields as different as anthropology (Henrich, Boyd, & Richerson, 2008;  
Ramsey, Bastian, & van Schaik, 2007), biology (Kolodny, Creanza, & 
Feldman, 2015; Lewis & Laland, 2012), as well as developmental (Beck, 
Williams, Cutting, Apperly, & Chappell, 2016; Legare & Nielsen, 2015) 
and evolutionary psychology (Cosmides & Tooby, 2002; Pinker, 2010). 
To date, most assume that two broadly independent psychological 
processes underlie the evolution of human cultural products (Cosmides 
& Tooby, 2002; Legare & Nielsen, 2015; Pinker, 2010; Ramsey et al., 
2007): innovation and imitation. While innovation leads to new beha-
viors that result in cultural change, imitation is associated with the 
preservation of existing behaviors through faithful copying. Legare and 
Nielsen (2015) reason that from an early age these two psychological 
processes act as “dual engines” leading to uniquely human forms of 
cultural learning that mediate both the generation and replication of 
adaptive behaviors across generations. 

However, it is clear that our species' potential for imitation and 
innovation are not equivalent. While humans are exceptional and pre-
cocious imitators (Tomasello, 2016), both children (Beck, Apperly, 
Chappell, Guthrie, & Cutting, 2011; Neldner et al., 2019) and adults 
(Basalla, 1988; Williams, 2010) are poor independent innovators and 
problem-solvers after controlling for task difficulty (i.e., requisite 

cognitive skills) and cultural knowledge (i.e., familiarity with related 
problems). In fact, the anthropological literature is full of examples of 
skilled explorers succumbing to the elements after failing to solve basic 
problems that are readily solved by local populations (Boyd, Richerson, 
& Henrich, 2011; Henrich, 2016). Yet, humans innovate nonetheless. 
How? 

Computer simulations have addressed these questions by proposing 
learning mechanisms that effectively combine knowledge, behaviors, or 
cultural products (Henrich et al., 2008; Lewis & Laland, 2012; Mesoudi, 
2015). While some models have emphasized the role of ‘happy accidents’ or 
‘lucky leaps’ mediated by asocial—individual—learning (Kolodny et al., 
2015), virtually all models point to social learning as the dominant driver 
for both innovations and cumulative cultural evolution. Particularly im-
portant in these models are hypothesized mechanisms that lead to the 
elaboration (Kolodny et al., 2015; Mesoudi, 2015) and/or combination of 
socially learned responses (Lewis & Laland, 2012; Migliano et al., 2020). 
Cultural learning studies have corroborated the predictions of these models 
showing that different forms of social learning can produce cumulative 
cultural changes (Caldwell & Millen, 2009). Other studies have shown that 
children and adults combine different semantic facts to produce novel in-
ferences and knowledge (Bauer & Larkina, 2017). However, progress has 
been limited by the fact that most of these studies have assessed cultural 
learning using a single response or task demonstrated by one model. All of 
the studies that have used multiple models (Fay, De Kleine, Walker, & 
Caldwell, 2019; Herrmann, Legare, Harris, & Whitehouse, 2013; Kempe & 
Mesoudi, 2014; Muthukrishna, Shulman, Vasilescu, & Henrich, 2014) have 
presented participants with the same target response or variations thereof. 
In some of these studies participants had the opportunity to, for example, 
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adopt different variations of paper-folding techniques to make a paper 
airplane (Caldwell & Millen, 2009) or variations of knot-tying techniques 
(Muthukrishna et al., 2014). The innovation in these studies represent ex-
amples of innovation by modification (Mesoudi, 2015) rather than in-
novation by combination, which involves integrating qualitatively different 
responses or products (Subiaul, Krajkowski, Price, & Etz, 2015). Subiaul 
et al.'s (2015) task included combining different familiar responses (e.g., 
lifting or sliding) on a single puzzle box. These responses (e.g., removing 
velcro, lifting door) were yoked to specific goals (e.g., opening compart-
ment, retrieving sticker). While results showed that young children could 
copy different familiar responses from multiple models, the task did not 
afford a continuous measure by which to judge cumulative learning nor 
opportunities for invention, a sub-type of innovation involving the creation 
of a novel product as opposed to the modification of an existing object 
(Ramsey et al., 2007). Building on this body of research, the present study 
used a novel tower task inspired by the spaghetti tower of Caldwell and 
colleagues (Caldwell & Millen, 2008) and the tool construction task of Price 
and colleagues (Price, Lambeth, Schapiro, & Whiten, 2009). Specifically, 
our tower task (Fig. 1) consisted of discrete pieces (Fig. 1A) that could be 
productively combined in different ways (Fig. 1B) to build complex struc-
tures, only some of which were optimal in terms of structural soundness and 
height (e.g., Fig. 1C, D). These features made it possible to scale the task's 
difficulty for children and adults. It also allowed us to assess both quanti-
tative and qualitative differences in children's and adults' inventions (c.f.,  
Table 1). Such direct comparisons are critical to answer questions about the 
ontogeny of complex cognitive skills—such as innovation—which are as-
sumed to be largely the products of cognitive maturation, formal education 
or both (Beck et al., 2016; Carr, Kendal, & Flynn, 2016; Heyes, 2018;  
Neldner et al., 2019; Neldner, Mushin, & Nielsen, 2017). 

In Experiment 1, we contrasted an independent invention 
group—Baseline—that did not receive a demonstration or any social input 
prior to testing, with two summative learning groups: imitation and emu-
lation. Each group saw two different demonstrations that could be opti-
mally combined to generate a novel product. These summative learning 
groups varied in the amount of social information provided to participants. 
Specifically, the summative imitation group saw actions and outcomes, al-
lowing them to copy both. The summative emulation group saw only out-
comes, requiring them to independently infer the necessary actions. 

We hypothesized the following: First, if summative learning is a me-
chanism for invention, when compared to Baseline, more participants in the 
summative learning groups should (a) build tower elements (base, apex) 

and (b) combine them, creating an optimal tower from these component 
elements (c.f., Table 1). Second, if summative learning contributes to cu-
mulative learning, towers produced in the summative groups should become 
progressively taller across trials and be taller overall than those in Baseline. 
Third, given the differences in social input between summative imitation 
(i.e., sees both actions and results) and emulation (i.e., sees only results), we 
predicted greater rates of intuitive invention in the summative imitation 
than in the summative emulation group. Finally, if summative learning is an 
intuitive and unlearned means of inventing, there should be few to no 
significant differences in the learning patterns of children and adults across 
learning conditions. All hypotheses, predictions and results can be found in  
Table 2. 

2. Methods: experiment 1 

2.1. Participants 

Pilot data showed that the frequency of independent invention for 
the Optimal Tower (i.e., Baseline, see Table 1) among children was <  
10%, whereas the frequency of summative learning was < 30%. Given 
these parameters, the minimal sample size necessary to detect group 
differences with power = 0.9, p-value = .05 and Sampling Ratio = 1.0, 
was estimated to be 54 (Chow, Shao, Wang, & Lokhnygina, 2017). We 
based the child and adult sample size on these measures. 

2.1.1. Adults 
A total of 72 adults (24 per group: Baseline, Imitation, Emulation, 

Meanage = 22.43 yrs., SD = 6.19, Females = 36) were recruited and tested 
in the Estelle and Melvin Gelman Library on the Foggy Bottom Campus of 
The George Washing University in Washington, DC, using GWU IRB ap-
proved protocols. For both Exp. 1 and 2, a little over 50% of participants 
self-described as White/Caucasian (54%), the racial and ethnic breakdown 
of the remaining participants was: African American = 8%, Asian = 23%, 
Hispanic = 5%, Mixed = 4%, Did not respond = 6%. 

2.1.2. Children 
A total of 108 children (36 per group: Baseline, Imitation, Emulation) 

between the ages of 4–6 years (Meanage = 5.35 yrs., SD = 0.91, 
Females = 50) were recruited from the National Building Museum in 
Washington, DC. Children between the ages of 4–6 were selected based on 
pilot studies showing that children younger than 4 had difficulty combining 
the flat squares and placing squares in the cubes' ridges. We tested 4- to 6- 
year olds to evaluate age-related changes in performance among preschool 
age children prior to significant formal schooling. For both Experiment 1 
and 2 approximately 60% of children were White/Caucasian, the racial and 
ethnic breakdown of the remaining children were as follows: African 
American = 4%, Asian = 10%, Hispanic = 4%, Mixed = 15%, Did not 
respond = 8%. 

2.2. Task 

The Tower Task (Fig. 1) consisted of Dado cubes and Dado squares 
manufactured by Fat Brain Toy Company based in Elkhorn, NE. The 
hollow cubes varied in size and color: green cube (6 cm), blue cube 
(7 cm), red cube (8 cm). The flat squares were the same size (8.8 cm x 
.25 cm). All the tower pieces had ridges in each side which allowed for 
the pieces to be connected to each other. The cubes' ridges varied in 
size: green cube (3 cm x .25 cm), blue cube (3.5 cm x .25 cm), and red 
cube (4 cm x .25 cm). The ridges in the squares were all the same size: 
2.5 cm x.25 cm. Cubes could be stacked to form the base of the tower 
and squares could be combined to form the apex of the tower. 

Because the adult tower included more building pieces, we were able to 
include causally arbitrary responses that did not affect tower height to ex-
plore overimitation or copying of causally arbitrary responses (Horner & 
Whiten, 2005; Lyons, Young, & Keil, 2007). Specifically, we manipulated 
the combination of flat squares to form the tower's apex using an 

Fig. 1. Tower Task. (A) Child tower pieces: 2 cubes and 2 flat squares. (B) Child 
tower elements, apex (1), base (2). (C) Child Target (optimal) tower base. (D) 
Adult tower with 3 flat squares arranged by alternating color and 3 hollow 
cubes stacked optimally but atypically with middle cube as base. The additional 
pieces were added to make the task's difficulty comparable across age groups. 
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idiosyncratic combination of pieces (Red-Yellow-Red) as well as an un-
orthodox means of stacking cubes to form the tower's base that involved 
stacking the two other cubes atop the mid-sized (rather than the largest) 
cube (Fig. 1D). The unorthodox stacking of cubes introduced not just an 
irrelevant but a potentially maladaptive structural feature. This feature of 
the task allowed us to then evaluate whether invention via summative 
learning would attenuate overimitation and serve as a type of ‘adaptive 
filtering’ (Enquist & Ghirlanda, 2007), where suboptimal or maladaptive 
responses are removed or corrected. 

2.3. Procedures 

Children observed three live demonstrations. Adults watched a single 
video demonstration (c.f., Supplementary Movies 1.2–4.1). These demon-
stration procedures were used to maximize learning in both populations. 
First, while modern adults are regularly exposed to videos and are ac-
customed to learning from them, preschool age children have less experi-
ence learning from videos and are more accustomed to learning from live 
models. Second, although video provides greater stimulus control than live 
demonstrations, children suffer from a significant video learning deficit 
(Choi, Kirkorian, & Pempek, 2018; Dickerson, Gerhardstein, Zack, & Barr, 
2013; Moser et al., 2015). The differences in demonstration number have to 

do with differences in sustained attention between preschool age children 
and adults. While watching 1 versus 3 demonstrations is unlikely to affect 
the performance of adults, a single demonstration would have depressed the 
performance of children (Barr, Muentener, & Garcia, 2007; Barr, 
Muentener, Garcia, Fujimoto, & Chavez, 2007). In short, these procedural 
differences made results more comparable across age groups. 

Each demonstration was approximately 30 s in length. There were 
two social groups that assessed summative learning:  

•  Summative Imitation: This group was provided with the most social 
input and required the least individual—inferential—learning. The 
summative imitation group saw two different models: One who built 
the base of the tower by rotating and stacking cubes atop each other. 
The other built the apex of the tower by conjoining the two flat 
squares (Figs. 2-1A). Participants never saw the two tower ele-
ments—base and apex—combined. Following each demonstration 
participants saw each model disassemble the pieces returning them 
to the starting state. See Suplementary Material and Movie 1.2.   

•  Summative Emulation: The summative emulation group saw the 
same demonstration as the Summative Imitation group except that 

Table 1 
Dependent measures and outcomes used in Experiment 1 and 2. Note: Summative learning is a general term that includes two distinct social learning processes that 
produce inventions, summative imitation (Fig. 2A.1) and summative emulation (Fig. 2A.2).     

Measures & outcomes Optimal (structurally-sound) Suboptimal (structurally-unstable)  

Apex Linked squares by inserting it in one of the squares' ridges Linked squares along a solid surface, not in one of the squares' ridges 
Base Rotated cube(s) on side, stacking another cube on solid surface Balanced one cube atop another's edges 
Tower Combined apex and optimal base Combined apex and suboptimal base 
Summative learning Combined apex and optimal base following a demonstration Combined apex and suboptimal base following a demonstration 
Independent invention Combined apex and optimal base in Baseline (without a demonstration) Combined apex and suboptimal base in Baseline (without a demonstration) 

Table 2 
Summary of the main hypotheses, predictions, and study outcomes. [A] = Adults, [C] = Children.       

Hypotheses Measured Outcome Predictions Outcome of 
Experiment 1 

Outcome of 
Experiment 2  

Summative learning is a mechanism for 
invention 

# of successful 
participants 

a) Tower elements: More in summative learning groups 
compared to baseline 

[A] Supported 
[C] Supported 

[A] Supported 
[C] Supported 

b) Optimal tower: More in summative learning groups 
compared to baseline 

[A] Supported 
[C] Supported 

[A] Supported 
[C] Supported   

c) Optimal tower: More in summative imitation 
compared to summative emulation 

[A] Not Supported 
[C] Not Supported 

[A] Not supported 
[C] Not supported 

Summative learning contributes to cumulative 
learning 

Tower Height a) Taller across trials [A] Supported 
[C] Partial Support 

[A] Partial Support 
[C] Supported   

b) Taller in summative learning groups compared to 
baseline group 

[A] Supported 
[C] Not Supported 

[A] Supported 
[C] Partial Support 

Mechanisms underlying summative and non- 
summative social learning are the same 

No. of successful 
participants 

a) Tower elements: No difference between summative 
and full imitation groups 

— [A] Supported 
[C] Supported 

b) Optimal tower: No difference between summative 
and full imitation groups 

— [A] Supported 
[C] Supported 

c) Tower elements: No difference between summative 
and full emulation groups 

— [A] Partial support   

d) Optimal tower: No difference between summative 
and full emulation groups 

— [A] Supported 

Summative imitation (but not full imitation) 
serves as an adaptive filter 

No. of participats 
overimitating 

a) Patterned linking and atypical stacking: More adults 
copied both relative to baseline in the full imitation  

[A] Supported   

b) More adults copied patterned apex but not atypical 
base relative to Baseline in summative imitation  

[A] Supported 

Summative learning is an intuitive means of 
inventing 

No. of successful 
participants 

a) Tower elements & Optimal tower: No difference 
between adults and children in baseline and summative 
imitation conditions 

Supported 

No. and type of errors b) No difference between adults and children across 
learning conditions 

Partial Support 
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only the assembled tower elements were shown (Fig. 2-A2). The 
actions used by the models to make each tower element were oc-
cluded. Instead of observing the actions, participants only saw 
completed tower elements—Base/Apex—associated with a specific 
model (c.f., Suplementary Material and Movie 2.2). In contrast to 
the summative imitation group, this group was provided with some 
social input and required to infer the actions necessary to generate 
the optimal base and apex. 

After the demonstration, participants were given the unassembled 
tower pieces and instructed to build the tallest possible tower with all 
the pieces. 

Social groups were contrasted with the following independent in-
vention group:  

• Baseline: This group was provided with no social input and required 
the most individual—inferential—learning. Testing procedures fol-
lowed the same procedures used in the summative learning groups 
except that participants in this group did not observe a demon-
stration prior to testing. 

For adults, the gender of individual participants and models in video 
matched. However, children always watched female models. We mat-
ched the gender of models and participants in adults because research 
has shown that learning and memory is better when models are mat-
ched by sex (Signorella, Bigler, & Liben, 1997). However, we used only 
female models with children because young children have stranger 
anxiety, specifically, for unfamiliar males (Heerwagen & Orians, 2002). 

During the demonstration, all participants observed the models 
create specific tower elements. The position of the models (left/right) 
and associated tower elements were counterbalanced. Demonstrations 
across all participants and groups used a standard script. Following the 
demonstration, participants were given 4 (children) or 6 (adult) tower 
pieces and instructed to build the tallest possible tower using all the 
pieces. Participants were given an unlimited amount of time to com-
plete a tower. For a trial to end, towers had to stand on their own and 
all pieces had to be connected or contact each other. When participants 
finished building the tower, an experimenter measured the tower's 
height. If participants did not generate a target tower (Child: 22–24 cm; 
Adult: 34–36 cm)–either optimal, with optimal base (Fig. 1C, D) or 
suboptimal with suboptimal base (Fig. 3A)–they were given a second 
trial following the same procedures described above, but no additional 
demonstration. Before the start of the second trial, the previously built 
tower was disassembled and tower pieces were laid in front of the 
participant as in Trial 1. Participants were then told to try building “an 
even taller tower” (Adult) or “another super tall tower” (Child). If the 
participant did not generate a target tower, this procedure was repeated 
on a third and final trial. We used the same protocol for participants in 
the Baseline group. 

2.4. Measures and video coding procedures 

We coded all responses made by participants. Because children and 
adults' towers included a different number of pieces, two coding tem-
plates were used, one for each population. The adult template included 
47 different responses. The child's template included 31 different 

Fig. 2. Experiment 1: Procedures and Results. Rows correspond to (A) experimental groups, (B) proportion of subjects generating tower elements and (C) proportion 
of subjects generating optimal and suboptimal towers. Columns correspond to each experimental group each measuring a type of summative learning (c.f., Tables 1, 
1) two model summative imitation, (2) two model summative emulation and (3) baseline or independent invention. Note: * significantly greater than baseline. 
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responses. Target responses were associated with building the optimal 
tower and included combining all the squares (i.e., Tower's Apex,  
Fig. 1B-1), rotating cubes on their side and optimally stacking them on 
a solid, stable surface (i.e. Tower's Base, Fig. 1B-2), as well as com-
bining the two tower elements optimally by inserting squares inside the 
small cube—(Child, Fig. 1C)—or in either the small or middle cube 
(Adult, Fig. 1D), or combining the two tower elements sub-optimally 
(e.g., placing optimally stacked cubes atop combined squares.1 Table 1 
describes the dependent measures used in the present study. 

2.4.1. Errors 
In addition to coding for these target responses, we also identified 

three types of errors (Fig. 3A-D). These errors were suboptimal re-
sponses that either did not meaningfully contribute to tower height 
(Nesting and Stacking Errors) or produced very unstable structures 
(Balancing Errors). The suboptimal base was categorized as a balancing 
error because it involved balancing cubes on their edges (Fig. 3A), 
making it structurally unsound and prone to collapse. 

Across studies and groups, when participants combined tower ele-
ments (apex + base)– optimally or suboptimally–to produce the tallest 
possible tower, the study ended. The reason for this decision rule being 
that having discovered the tallest possible tower (despite variation in 
structural optimality) any other structure would be, necessarily, either 
the same height or smaller. The only exception was when participants 
specifically asked for additional opportunities to try to generate an even 
taller target tower. However, testing sessions never exceeded a total of 
3 trials. When participants generated one of the target towers before 
Trial 3, the responses made on that final trial were reproduced for the 
remaining incomplete trials. We did this because: (1) leaving cells blank 
would diminish statistical power when conducting repeated measures 
and (2) asking subjects to repeat what they did in previous trials would 
have introduced additional memory and attentional confounds. 

Statistical Analyses: All chi-square goodness of fit tests were per-
formed using SPSS 25 (IBM Corp). Bonferroni procedures were used to 
correct for multiple chi-square tests. All p-values were two-tailed. 
Linear mixed models (LMMs) and generalized linear models (GLMs) 
were conducted in R version 3.5.2 (Team, 2018) using the lme4 
package (Bates, Maechler, Bolker, & Walker, 2015). Pairwise post hoc 
comparisons using Tukey's correction for multiple testing were con-
ducted using the emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 
2019) package. Significance of fixed effect predictors was determined 
using likelihood ratio tests (LMMs) and Wald Z tests (GLMs). Model 
assumptions were evaluated using diagnostic residual plots. Pre-
liminary analyses did not reveal any effects for sex, so we excluded this 
variable from our analyses. 

2.5. Open practices & data accessibility 

Experiment 1 was not preregistered. However, de-identified data for 
this experiment along with the coding templates used and data analysis 
scripts are posted here: [https://osf.io/casw8/]. Additional materials 
used in this study will be made available upon request. 

2.6. Results 

2.6.1. Was there evidence of summative learning? 
To answer this question, we used chi-square goodness of fit tests to 

compare the number of individuals in each group who produced (i) the 
optimal base, (ii) the suboptimal base, (iii) the apex, (iv) combined the 
optimal base and apex to produce the optimal tower and (v) combined 
the suboptimal base and apex to produce a suboptimal tower. Full Chi- 
square test results can be found in Supplementary Material 1: Table A1. 

Adults' performance differed by group for the optimal base (χ2 

(2) = 29, p  <  .01, φ = 0.63) with fewer Baseline participants gen-
erating the optimal base than either social group (all χ2 (2)  >  8.65, all 
ps  <  0.01, all φs  >  0.35). No other contrast for adults was significant. 
Results are summarized in Fig. 2-B. 

The number of adults generating the optimal tower differed across 
groups (χ2 (4) = 18.38, p  <  .01, φ = 0.5) with more participants in 
the social groups generating the target tower relative to Baseline (all χ2 

(2)  >  16, all ps  <  0.01, all φs  >  0.46). No other contrast for adults 
was significant. Results are summarized in Fig. 2-C. 

Like adults, the number of children who built the optimal base 
differed by group (χ2 (2) = 12.72, p  <  .01, all φs = 0.34). More 
children in the social groups produced the optimal tower base, when 
compared to Baseline (all χ2 (1)  >  8.0, all ps  <  0.01, all φs  >  0.27). 
As can be seen in Fig. 2-B, children and adults alike were more likely to 
produce the suboptimal tower base in Baseline than in any other group. 
However, this difference did not reach statistical significance after 
corrections (c.f., Supplementary Material 1: Table A1). 

The number of children who generated the optimal tower also dif-
fered by group (χ2 (2) = 15.75, p  <  .01, φ = 0.38). Children, like 
adults, were more likely to produce the optimal tower in the social 
groups than in Baseline (all χ2 (1)  >  12, all ps  <  0.01, all 
φs  >  0.30). No other contrast for children was significant. Results are 
summarized in Fig. 2-C. 

2.6.2. Does summative learning produce cumulative learning? 
To answer this question, we examined predictors of tower height 

using linear mixed models (LMMs). We created a LMM for adults that 
included Tower Height as the response variable with trial number 
(1–3), group (baseline, summative imitation, summative emulation) 
and the trial by group interaction as fixed effect predictors. Participant 
ID was included as a random intercept to control for multiple responses 
from the same participant. Results showed a main effect for group (LRT: 
χ2 (2) = 42.97, p  <  .01) and trial (LRT: χ2 (2) = 59.71, p  <  .01). 
The interaction between trial and group was not significant (LRT: χ2 

Fig. 3. Suboptimal Responses. (A) suboptimal base, (B) stacking error, (c) Nesting error, (D) balance error.  

1 This type of tower was very rare. However, if it consisted of the optimal 
base, it was coded as an optimal tower because it was structurally sound. If it 
consisted of the suboptimal base it was coded as a suboptimal tower. This de-
cision was motivated by the fact that a key outcome measure was summative 
learning (c.f., Table 1). 
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(4) = 3.84, p = .43). Pairwise comparisons showed that towers in Trial 
1 were shorter than towers in Trial 2 (p  <  .01) and Trial 3 (p  <  .01). 
Likewise, towers in trial 3 were taller than those of trial 2 (p = .04). 
Participants in the Baseline group produced significantly shorter towers 
than those in either the summative imitation (p  <  .01) or summative 
emulation (p  <  .01) groups. The difference between summative 
learning groups was not significant (p = .97). Results are summarized 
in Fig. 4A, Supplementary Material 1: Table A5. 

We used the same model for children with the exception that the 
child model included age group (year 4–6). Results showed a main ef-
fect for trial (LRT: χ2 (2) = 11.42, p  <  .01) and age (LRT: χ2 

(2) = 14.03, p  <  .01; Supplementary Material 1: Table 3). Tukey's 
pairwise comparisons showed that towers in trial 3 were taller than 
towers in Trial 1 (p  <  .01) and Trial 2 (p = .02). No other comparison 
was significant; However, group (LRT: χ2 (2) = 5.41, p = .07) and the 
trial by group interaction approached statistical significance (LRT: χ2 

(4) = 8.64, p = .07), where 5- and 6-year-olds produced taller towers 
than 4 - year-olds (p  <  01). Like adults, towers in the social groups 
were taller than those in Baseline. And, while towers in the social 
groups tended to get taller across trials, those in baseline did not. Re-
sults are summarized in Fig. 4A, Supplementary Material 1: Table A4. 

2.7. Discussion 

Experiment 1 produced several significant findings: First, both 
adults and young children faithfully replicated two distinct responses 
on novel objects demonstrated by two different models. Second, parti-
cipants of all ages spontaneously combined these responses in an un-
observed way to generate an optimal tower. Third, there was evidence 
of cumulative learning across trials as evidenced by significant in-
creases in tower height for both children and adults. However, adults' 
cumulative learning was more robust relative to children (c.f., Fig. 4). 
Finally, 11 out of 11 chi-square contrasts between learning groups 
produced the same results in adults and children (c.f., Supplementary 
Material 1: Table A1). This pattern of performance suggests that the 
mechanisms mediating responses in this task are developmentally 
conserved. 

These results, however, raise a number of questions about the un-
derlying mechanisms mediating summative learning in the Tower Task. 
In an earlier study, Subiaul et al. (2015) found some evidence that 
imitation fidelity was higher in the two model summative imitation 
group than in the single model imitation groups. So, Experiment 2 
sought to evaluate the following: First, is learning different responses 
from different models the same as learning different responses from the 
same model? Second, is the combination of different imitated responses 
(i.e., summative imitation) like the imitation of a single continuous 
response (i.e., full imitation)? Likewise, is the combination of different 
emulated responses (i.e., summative emulation) like the emulation of a 

single continuous response (i.e., full emulation)? 
To address these questions, Experiment 2 replicated the procedures 

used in Experiment 1 with the following differences: First, Experiment 2 
compared summative learning with full demonstration groups that do 
not involve combining different observed responses. And, second, a 
single model built both the apex and base of the tower. If the cognitive 
mechanisms underlying summative learning are the same as those that 
mediate all forms of social learning, there should be no significant 
differences in performance between the summative and the full de-
monstration groups. Finally, Experiment 2 explored whether invention 
by summative imitation and emulation is, itself, a culturally learned, 
late-developing skill. Cross-cultural studies have found few differences 
in children's imitation fidelity (Nielsen & Tomaselli, 2010) or overall 
rates of innovation (Neldner et al., 2017; but see Neldner et al., 2019 for 
task-specific exceptions). However, prior studies suggest significant 
developmental discontinuities between the innovation rate of children 
and adults (Beck et al., 2011). If correct, we might expect both quan-
titative as well as qualitative differences in children's and adults' pat-
terns of performance across learning groups. 

3. Methods: experiment 2 

3.1. Participants 

3.1.1. Adults 
A total of 120 adults (24 per group: Baseline, Summative Imitation, 

Summative Emulation, Full Imitation, Full Emulation, Meanage  

= 23.09 yrs., SD = 6.39, Females = 57) were recruited and tested in 
the Estelle and Melvin Gelman Library on the Foggy Bottom Campus of 
The George Washington University in Washington, DC using GWU IRB 
approved protocols. 

3.1.2. Children 
A total of 72 children (24 per group: Baseline, Summative Imitation, 

Full Imitation, Mean age = 5.36 yrs., SD = 0.79, Female = 37) were 
recruited from the National Building Museum in Washington, DC. 

3.2. Task: same as in experiment 1 

3.2.1. Procedures 
Children were randomly assigned to one of three learning groups, 

either one of two summative learning groups (Table 1)–Summative 
Imitation (Fig. 5-A1) or Full Imitation (Fig. 5-A2)–or an independent 
invention (Baseline) group (Table 1, Fig. 5-A3). The procedures used 
were identical to those used in Experiment 1 with the following ex-
ception: Both summative and full imitation groups observed a single 
model generating each tower element—Base and Apex—and either 
combining them to show the optimal tower (Full imitation) or not 

Fig. 4. Cumulative Learning Results: (A) Experiment 1, (B) Experiment 2.  
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(Summative Imitation). 
Adults were randomly assigned to the same three groups as children 

as well as two other groups: summative emulation (Fig. 6-A1) and full 
emulation (Fig. 6-A2) group. These groups were identical to the imi-
tation groups with the exception that the actions necessary to produce 
tower elements (i.e., summative group) or to produce tower elements 
and then the optimal tower (i.e., full demonstration group), were oc-
cluded and only the end-results were observed. Duration of videos were 
the same for all groups, guaranteeing that all groups were exposed to 
tower pieces and elements for approximately the same amount of time. 
Children were not tested on the emulation conditions due to time and 
budgetary constraints. See Supplementary Material 1 for scripts and 
some of movies used in Experiment 2 (Movie 3.1 and 4.1). 

As in Experiment 1, children saw live demonstrations; adults saw 
video demonstrations. 

3.2.2. Open practices & data accessibility 
Experiment 2 was pre-registered. The preregistration for 

Experiment 2 (children) can be accessed here: [https://aspredicted.org/ 
blind.php?x=uh7p63]. Pre-registration for Experiment 2 (adults) can 
be found here: [https://aspredicted.org/blind.php?x=wt7fb8]. De- 
identified data for experiments along with the coding templates and 
data analysis scripts are posted at [https://osf.io/casw8/]. The mate-
rials used in these studies are widely available. 

3.3. Results 

3.3.1. Did summative and full imitation groups differ? 
Adults' performance in Experiment 2 differed by group for the op-

timal base (χ2 (2) = 18.13, p  <  .01, φ = 0.5) with fewer Baseline 

participants generating the optimal base than either imitation group 
(all χ2 (2)  >  8.5, all ps  <  0.01, all φs  >  0.34). However, in contrast 
to Experiment 1, there were significant group differences for the gen-
eration of the apex of the tower (χ2 (2) = 12.078, p  <  .01, φ = 0.41). 
Specifically, only the full imitation group generated the apex more 
often than participants in Baseline (χ2 (1) = 9.6, p  < . 01, all 
φs  >  0.37). No other contrast was significant. Results are summarized 
in Fig. 5-B. 

The number of adults generating the optimal tower also differed 
across groups (all χ2 (4) = 20.48, p  <  .01, φ = 0.53). Specifically, 
more participants in the social groups generated the optimal tower 
relative to Baseline (all χ2 (2)  >  15, all ps  <  0.01, all φs  >  0.46). 
Social groups did not differ from each other on any other measure. 
Results are summarized in Fig. 5-C. 

As in Experiment 1, and like adults, the number of children in 
Experiment 2 who built the optimal base differed by group (χ2 

(2) = 26.52, p  <  .01, φ = 0.60): More children in the social groups 
produced the optimal tower base when compared to Baseline (all χ2 

(1)  >  8.05, all ps  <  0.01, all φs  >  0.28). Social groups did not differ 
from each other. Results are summarized in Fig. 5-B. 

The number of children who generated the optimal tower similarly 
differed by group (all χ2 (2)  >  23, all ps  <  0.01, all φs  >  0.23) with 
more children in the social groups producing the optimal tower than 
children in Baseline (all χ2 (1)  >  11, all ps  <  0.01, all φs  >  0.33). 
The differences between social groups were not significant. Results are 
summarized in Fig. 5-C. 

As in Experiment 1, more children and adults in Baseline generated 
the suboptimal tower base than participants in either the summative 
and full imitation groups, however, these differences did not reach 
statistical significance after corrections (c.f., Supplementary Material 1: 

Fig. 5. Experiment 2 Groups and Results for Children and Adults. Rows correspond to (A) experimental groups, (B) proportion of subjects generating tower elements 
and (C) proportion of subjects generating optimal and suboptimal towers. Columns correspond to each experimental group: (1) one model summative imitation, (2) 
one model full imitation and (3) baseline. Note: * significantly greater than baseline. 
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Table A1). The fact that this trend appears in both Experiment 1 and 2 
and in children as well as adults, points to a small, but nonetheless 
reliable, individual learning signal for this task. 

3.3.2. Did summative and full emulation groups differ? 
Analyses replicated those described above, but included the adult 

summative and full emulation groups. When compared to Baseline, 
there were differences in the number of individuals in each group 
generating the optimal base and apex (all χ2 (4) = 24.27, p  <  .01, 
φ = 0.45) but not the suboptimal base (χ2 (4) = 8.19, p = .09, 
φ = 0.26). Post-hoc tests, using the Bonferroni correction, showed that 
the Summative Emulation group did not significantly differ from 
Summative Imitation or Baseline groups for any measure (all χ2 

(1)  <  5, all ps  >  0.05, φ = 0.20). However, when compared to the 
Full Emulation group, more participants in the Summative Imitation 
and Full Imitation group produced the optimal base, apex and target 
tower (all χ2 (1)  >  5, all ps  <  0.05, φ = 0.20). Emulation groups 
only differed when building the apex (χ2 (1) = 5.79, p  <  .05, 
φ = 0.22). Specifically, more participants in the summative emulation 
groups produced the apex than those in the Full emulation group. These 
results suggest that, in contrast to summative imitation, there's a fa-
cilitative effect associated with combining different results from dif-
ferent models (i.e., without observing the corresponding actions), but 
not when combining different results from the same model. Results are 
summarized in Fig. 6-B, 6-C. 

3.3.3. Does summative imitation produce cumulative learning? 
We replicated the models used in Experiment 1 when analyzing the 

data of Experiment 2, except that for children this new analysis in-
cluded full imitation (and excluded summative emulation); Whereas, 

for adults, the analysis included the same summative learning groups 
used in Experiment 1, in addition to full imitation and full emulation. 
For adults, there was a significant interaction between trial number and 
group (LRT: χ2 (2) = 16.64, p  <  .01). Based on pairwise comparisons, 
this interaction was driven by the fact that whereas there were sig-
nificant increases in tower height from Trial 1 to Trial 3 in the 
Summative Imitation (p  <  .01) and Baseline (p  <  .01) groups, the 
performance of the Full Imitation group was near ceiling at Trial 1, so 
did not change from Trial 1 to Trial 3 (p = .99). 

Among children, there were significant main effects of age (LRT: χ2 

(2) = 13.87, p  <  .01; Supplementary Material 1: Table A3), trial (LRT: 
χ2 (2) = 10.71, p  <  .01), and group (LRT: χ2 (2) = 21.54, p  <  .01). 
However, in contrast to adults, the group by trial interaction was not 
significant (LRT: χ2 (4) = 6.51, p = .17). Pairwise comparisons showed 
that 4-year old's' towers were significantly shorter than those of 5- 
(p  <  .01) and 6-year old's (p  <  .01). Towers in Trial 3 were taller than 
those in Trial 1 (p  <  .01) and marginally taller than those in trial 2 
(p = .05). Towers in the Full Imitation group were also taller, overall, 
than those in Baseline (p  <  .01) and Summative Imitation (p  <  .01). 
No other comparison was significant. Results are summarized in  
Fig. 4B, Supplementary Material 1: Tables A6-A7. 

3.3.4. Does summative emulation produce cumulative learning in adults? 
We replicated the models used in Experiment 2 and added the 

summative emulation and full emulation groups. The group by trial 
interaction was significant (χ2 (8) = 32.18, p  <  .01). This interaction 
was driven by the fact that whereas there were significant increases in 
tower height from Trial 1 to Trial 3 across most groups, including 
Baseline (all p  <  .05), the performance of the Full Imitation group was 
near ceiling at Trial 1, so did not change from Trial 1 to Trial 3 

Fig. 6. Experiment 2 Groups and Results for Adults. Rows correspond to (A) experimental groups, (B) proportion of subjects generating tower elements and (C) 
proportion of subjects generating optimal and suboptimal towers. Columns correspond to each experimental group: (1) one model summative emulation, (2) one 
model full emulation and (3) baseline. Note: After correction none of the measures significantly differed from Baseline. 
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(p = .99), and that of the Full emulation group was at the floor in 
comparisons to the other groups and remained flat (p = .95). Results 
are summarized in Fig. 4B. 

3.3.5. Did adults overimitate? 
The number of adults who overimitated one or more arbitrary base 

(atypical stacking) or apex (patterned linking) elements differed by 
group in Experiment 1 (Chi-square goodness of fit, Base: χ2 

(4) = 6.911, p = .032, φ = 0.31; Apex: χ2 (4) = 8.117, p = .017, 
φ = 0.34) and Experiment 2 (Base: χ2 (4) = 14.653, p = .005, 
φ = 0.349; Apex: χ2 (4) = 16.885, p = .002, φ = 0.375). In 
Experiment 1, the number of individuals overimitating base and apex 
elements significantly differed from baseline (all χ2 (3)  >  5, p  <  .05, 
φ = 0.30). However, in Experiment 2, only participants in the full 
imitation group significantly overimitated both tower elements relative 
to those in baseline (all χ2 (1)  >  6, p  <  .05, φ = 0.35). Summative 
imitation groups differed from baseline in number of individuals 
overimitating the apex (χ2 (1) = 8.33, p = .016, φ = 0.42) but not the 
base element (χ2 (1) = 4.18, p = .16, φ = 0.42). However, summative 
and full imitation groups did not differ (all χ2 (1)  <  3, p  >  .65, 
φ = 0.22). These results show that while participants overimitated the 
arbitrary combination of squares to form the tower's apex above 
Baseline levels, they appear to have inhibited copying the atypical–and 
potentially suboptimal–stacking of cubes to make the tower's base. This 
pattern of performance is consistent with goal emulation in favor of a 
more stable tower base. Results are summarized in Fig. 7. 

As in prior work (Berl & Hewlett, 2015; Flynn & Smith, 2012;  
McGuigan, 2012; McGuigan, Gladstone, & Cook, 2012; McGuigan, 
Makinson, & Whiten, 2011; Whiten et al., 2016), our finding of adults 
copying arbitrary responses when building both the base and the apex 
of the tower provides robust evidence of overimitation. However, par-
ticipants' overimitation was not indiscriminate, which suggests that 
summative imitation, specifically, may act as an adaptive filter (Enquist 
& Ghirlanda, 2007). In particular, adults consistently copied the arbi-
trary combination of squares to make the tower's apex (no physical 
consequence) in both summative and full imitation groups. Yet, in Ex-
periment 2, only in the full imitation group did more adults copy the 
atypical stacking of cubes relative to those in Baseline. Note that this 
response, while potentially diminishing the stability of the tower, had 
no impact on tower height. As such, adults' overimitation in the present 
task did not involve ‘blanket copying’ (Whiten et al., 2016), but instead, 
appears to have been constrained by folk physical knowledge (Lyons, 
Damrosch, Lin, Macris, & Keil, 2011). 

3.3.6. Is summative imitation an intuitive mechanism for invention? 
To address this question, data from the baseline and summative 

imitation groups were collapsed across Experiment 1 and 2. We first 
examined potential differences between adults and children in the 
frequency of independent invention (c.f., Table 1) for tower elements 
(optimal base, apex) and spontaneous combination without any de-
monstration. Results showed no significant difference in the rate of 
independent invention of the Optimal Tower between adults and chil-
dren after correcting for multiple comparisons (all χ2 (1)  <  4, all 
ps  >  0.10). All chi-square results are summarized in Supplementary 
Material 1: Table A8. 

Second, we examined error responses using separate generalized 
linear models (GLMs) for each error type with a binomial error dis-
tribution and a logit link function to determine what predicts the 
probability of making (1) an error in general or (2) any of the 3 types of 
errors: balance, nesting, stacking (Fig. 3B-D). For each participant we 
coded a binary outcome variable representing the presence or absence 
of a given error type at any point during the experiment (i.e. the error 
could be made in any trial). All models included Population (children, 
adults), Groups (baseline, summative imitation), and the interaction of 
Population and Group as predictors. Baseline and summative imitation 
were the only two groups that were shared by both populations across 
experiments. However, all results for all experimental groups that in-
cluded both children and adults are summarized in Fig. 8. 

In terms of the probability of making any error, there was a main 
effect for group (Baseline >  Summative Imitation, Z = −2.40, 
p  <  .02). The population by group interaction did not reach statistical 
significance (Z = −1.75, p = .08) but showed a tendency for children 
to be more likely to make an error than adults, specifically in the 
summative imitation group. The analysis of Stacking Errors showed a 
main effect for population (Children >  Adults, Z = −2.11, p = .04). 
But neither experimental group (Z = 0.43, p = .66) nor the population 
by group interaction (Z = −1.82, p = .07) reached statistical sig-
nificance. However, there was a non-significant tendency for children 
to be more likely than adults to make a stacking error in the summative 
imitation group in particular. The GLM for Nesting Errors produced 
only a significant main effect of group (Baseline >  Summative 
Imitation, Z = −2.12, p = .03). Finally, an analysis of Balance Errors 
showed a main effect for population (Adults >  Children, Z = 2.14, 
p = .03) and group (Baseline >  Summative Imitation, Z = −2.54, 
p = .01) but no significant population by group interaction 
(Z = −1.648, p = .10). Full GLM results including predicted prob-
abilities are summarized in Supplementary Material 1: Tables A9–A12. 

Fig. 7. Overimitation Performance. Proportion of adult participants replicating responses that were either irrelevant (patterned linking of squares) or maladaptive 
(atypical stacking of cubes). Note: * significantly greater than baseline. 
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3.4. Discussion 

When compared to independent invention (Baseline), the results of 
Experiment 2, involving a single model, did not differ from those of 
Experiment 1 involving 2 models. This similarity suggests that learning 
from one model involves the same skills as learning from 2 or more 
models. There were more potentially meaningful differences between 
the combination of different imitated responses (summative imitation) 
and the imitation of a single response (full imitation). This difference is 
important because summative learning whether from 1 or more models 
may require an asocial–undemonstrated–insight about how to opti-
mally join base and apex. In contrast, (full) imitation is purely social 
and likely primes overimitation, which would inhibit such asocial in-
sights. 

In contrast to summative imitation, we found relatively poor per-
formance in the emulation groups, particularly full emulation (c.f.,  
Fig. 4). In fact, summative and full emulation groups did not differ from 
the independent invention (Baseline) group. That is, being provided 
with only results by a single model, did not promote invention or cu-
mulative learning in adult participants (c.f., Lewis & Laland, 2012;  
Muthukrishna & Henrich, 2016 for similar results from a computational 
model). Together, these results provide empirical evidence to the hy-
pothesis that under most conditions, imitation is likely to be the pri-
mary mechanism for cumulative cultural evolution. 

It's unclear why summative emulation groups in Experiment 1 (2 
models) differed from Baseline whereas those of Experiment 2 (1 
model) did not. We had reported a similar result in an earlier study 
(Subiaul et al., 2015). Initially, we hypothesized that chunking (e.g., 
events) could explain any facilitative effect between learning different 
responses from one versus different models. But, if that were the case, 
there should have been a significant difference between all summative 
and full demonstration groups (whether imitation or emulation) be-
cause in summative learning groups, responses were always chunked 
and in the full demonstration groups they never were. While we found 
no difference between summative and full imitation demonstration 
groups, there were more consistent differences between the summative 
and full emulation groups, where learning was more robust in the 
former than the latter (c.f., Supplementary Material 1: Table A1). This 
pattern of performance points to the complexity of a task that super-
ficially appears to be both familiar and simple. 

Finally, we found no evidence to support the hypothesis that in-
vention by summative imitation is itself a culturally learned skill. 
Although cumulative learning was more robust in adults (c.f., Fig. 3E & 
F), results in 10 of 11 chi-square contrasts were the same for children 
and adults (c.f., Supplementary Material 1: Table 1). Additionally, 
adults made many of the same errors as children who were more than a 
decade younger (c.f., Fig. 8). This was particularly true in the in-
dependent invention (Baseline) group and broadly true in the summa-
tive imitation condition where the population by group interaction 
failed to reach statistical significance for any of the error types. In 
contrast to prior studies on tool innovation (e.g., Beck et al., 2011), the 
present study shows that when both task difficulty and cultural 
knowledge are equated, children and adults are equally poor in-
novators. 

4. General discussion & conclusions 

Although ‘traditions’ exist in nature (Fragaszy & Perry, 2003) and 
some of these traditions have been described as ‘cultural’ (Mann, 
Stanton, Patterson, Bienenstock, & Singh, 2012; van Schaik et al., 2003;  
Whiten et al., 1999), human cultural traditions are cumulative, be-
coming more complex over time (Henrich, 2016; Laland, 2017;  
Mesoudi, 2011). Why? Here, we provide evidence that summative 
imitation and, to a lesser extent, emulation represent (i) spontaneous 
and intuitive mechanisms that children and adults alike use to innovate, 
as well as (ii) a means by which to aggregate adaptive behavioral re-
sponses over time. Specifically, our results show that participants who 
observed distinct tower elements demonstrated by one or more models, 
spontaneously combined these elements to produce an unobserved 
optimal tower. There were remarkably few significant differences be-
tween summative imitation and full imitation groups, despite the fact 
that the former required combining distinct behaviors in novel ways 
and the latter did not (c.f., Fig. 3D). However, when compared to 
Baseline, the differences in performance between imitation and emu-
lation groups across experiments was notable (c.f., Figs. 3, 5-6). These 
results suggest that the effect of summative learning on cumulative 
culture is sensitive to the type or quality of information as well as the 
number of models available (Beck et al., 2011; Muthukrishna & 
Henrich, 2016). 

The fact that children faithfully replicated different tower elements 

Fig. 8. Proportion of children and adults making specific types of errors in Experiments 1 and 2. Columns capture the proportion in each learning group making one 
of three types of errors: stacking, balance and nesting (examples of each are pictured above). Note: The maximum possible proportion of participants making a given 
error type = 1 (i.e., a participant that makes all three errors would have the maximum score of 3). 
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and adults evidenced overimitation may not be surprising to many. 
What should be surprising to all is that both adults and young children 
used their imitation learning skills to innovate in nearly identical ways. 
These results demonstrate that nearly two decades of higher education 
and direct experience balancing and stacking objects does not sig-
nificantly affect invention by summative imitation in our Tower Task 
(Fig. 1). This outcome was neither inevitable nor artificial. First, despite 
our efforts to equate task difficulty and familiarity, recall that partici-
pants could make anywhere from 31 (children) to 47 (adults) different 
responses and over a dozen different structures. Second, given these 
degrees of freedom, children could have failed to evidence invention by 
summative learning or demonstrated adult-like performance much later 
in development. Third, although there was only one optimal solution, 
participants could have consistently favored a variety of other sub-op-
timal structures, including one that, although structurally unsound, was 
optimally tall (e.g., Fig. 3A). Finally, children and adults could have 
arrived at similar outcomes while differing in the types of errors they 
made in the process. 

The parallels between the performance of children and adults, 
coupled with earlier work showing that summative imitation on a fa-
miliar task appears at least by age 3 (Subiaul et al., 2015), is incon-
sistent with the hypothesis that cumulative learning and innovation via 
summative learning is a culturally learned skill or ‘cognitive gadget’ 
(Heyes, 2018). Instead, these results suggest that both summative 
imitation and emulation represent distinct information-processing 
adaptations for cultural learning. This conclusion is strengthened by 
cross-cultural research showing the both the onset, fidelity and versa-
tility of young children's imitation (Callaghan et al., 2011) and in-
novation (Neldner et al., 2017; Nielsen & Tomaselli, 2010) skills are 
similar across western and non-western cultures. 

But, admittedly, such conclusion regarding the nature of innovation 
in humans must be tempered by the fact that the present study only 
included WEIRD (Western, Educated, Industrialized, Rich, and 
Democratic) participants, whose performance may be non-re-
presentative (Henrich, Heine, & Norenzayan, 2010). Arguably, our 
tower task measures a non-functional, culture-specific skill. But that 
assumption overlooks the fact that the production of tall, stable, 
structures like a tower depends on comprehending folk physical con-
cepts such as support and balance (Kubricht, Holyoak, & Lu, 2017;  
Povinelli, 2012). An understanding of these folk physical concepts is 
inherent in structures as different as igloos, teepees and skyscrapers, but 
also in tools like ladders and stools as well as activities like tree- 
climbing. Given this, we predict little cross-cultural variation in our 
tower building task. Though, extending this paradigm to non-WEIRD 
cultures is necessary to conclusively answer this question. 

Without doubt, innovations arise from multiple sources: social, 
asocial or, even, by accident (Kolodny et al., 2015). The question is, 
what is the dominant source and character of human innovation? Our 
results provide empirical support to the claim made by Muthukrishana 
& Henrich (2016) as well as those of Kroeber (1917) over a century ago, 
that—on average—most human innovations are inherently social; Its 
content is communis generis, of a common or shared type, rather than sui 
generis or a thing in itself. Even, when innovations arise serendipitously, 
the resulting products are socially-mediated (Kolodny et al., 2015;  
Migliano et al., 2020). For instance, in the present study, participants' 
optimal tower could have resulted from social processes–imitating cube 
stacking and square linking–as well as individual processes–inferring 
how best to connect these different structures. But the connection of 
these structures may have also been socially learned rather than in-
dividually inferred. For example, upon witnessing the joining of the flat 
squares (Fig. 1B-1), participants may have learned that items with 
ridges could be connected with other items with ridges; a type of social 
(emulation) learning referred to as affordance learning (Nagell, Olguin, 
& Tomasello, 1993) which has been implicated in other studies on in-
novation (Neldner et al., 2019). Alternatively, participants may have 
imitated the stacking of cubes and the insertion of flat squares in the 

ridge of any item with a ridge (whether another square or a cube). One 
or more of these explanations may account for participants' summative 
learning in the present study and warrants further investigation. Re-
gardless, summative learning, whether by imitation or emulation, may 
represent a unique cultural learning mechanism that generates both 
new solutions (innovations) and products (inventions) in response to 
novel problems. Its primary function being the integration of outputs 
from one or more social (imitation or emulation) and/or asocial (in-
ferential) learning processes. Building on the dual engine model (Legare 
& Nielsen, 2015), these results suggest that summative learning re-
presents a cultural learning mechanism modulating different ‘engines’ 
(social and/or asocial) necessary for the elaboration and aggregation of 
knowledge. 

While these results cannot entirely exclude the possibility of some 
asocial learning in children's and adults' intuitive inventions, various 
studies have shown that both children and adults turn to social, rather 
than individual learning, when they encounter new problems (Flynn, 
Turner, & Giraldeau, 2016). Research with children has also shown that 
neither divergent (creative) thinking nor executive functions such as 
inhibition or working memory significantly predict innovation. How-
ever, receptive vocabulary does (Beck et al., 2016). Beck and colleagues 
(Beck et al., 2016) interpreted this association between vocabulary and 
innovation as one between innovation and “general” intelligence. But 
receptive vocabularies are a measure of word learning, a cultural 
learning skill. If innovation depends on social learning, then language 
learning should predict innovativeness better than asocial cognitive 
processes like executive functions. This is not to say that in-
novation–specifically, invention–is independent of executive functions, 
it is not (Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014; Liu et al., 
2018). Rather, executive functions (among other asocial cognitive 
variables) do not appear to be the principle predictor of innovation in 
general and invention, in particular. 

While we do not expect much variation in tower-building skills 
cross-culturally, the effects of summative learning on cumulative 
learning might evidence more cross-cultural variation, at least in terms 
of developmental onset. Recall that young children's cumulative 
learning was weak relative to that of older children and adults. This 
result suggests that specific task-demands or experience-dependent in-
formation-processing skills are likely to constrain cumulative learning 
via summative learning in children. 

We also do not want to overlook the role that different procedures 
or methodological choices might have on both children and adults' 
performance. In contrast to most experimental research on cumulative 
cultural evolution, the paradigm used here assessed cumulative 
learning within- not between-subjects (Caldwell & Millan, 2008). The 
assumption being that between-subject cumulative learning is unlikely 
without evidence of within-subject cumulative learning. But this as-
sumption sidesteps an age-old problem: To what extent (or in which 
contexts) are macro- and micro-cumulative cultural evolutionary 
changes yoked (Sapir, 1917) or not (Kroeber, 1917)? 

Our task also differed from those used in previous studies. While 
many different structures are possible with the pieces provided, optimal 
height and structural soundness was purposefully constrained, poten-
tially limiting the differences between children and adults in terms of 
invention. In fact, there was only one possible optimal invention. 
Though, there were over a dozen possible structures that could be built. 
Nonetheless, our approach has several advantages. First, it allows us to 
clearly identify what was socially learned from what was individually 
inferred. Second, tower features are discrete and directly associated 
with both continuous (e.g., tower height) and categorical factors (e.g., 
errors) that affect structural soundness. Finally, these task features 
made it possible to scale the task in terms of difficulty for different 
populations in a predictable manner. This last point is critical to un-
derstand the differences between children and adults' potential for in-
novation, a major concern in prior developmental research (Beck et al., 
2011; Carr et al., 2016; Neldner et al., 2017). 
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Although this study focuses on the artefact domain (Henrich, 2016), 
cumulative cultural evolution is a feature of various domains from 
language (Kirby, 2017) to medicinal knowledge (Migliano et al., 2020). 
While summative learning is unlikely to work the same across all tasks, 
we nonetheless expect summative learning to be a powerful source of 
novel knowledge (Bauer & Larkina, 2017) and cultural products 
(Muthukrishna, Doebeli, Chudek, & Henrich, 2018) in many different 
domains.2 Consider word learning. According to the Global Language 
Monitor, over 5000 new words are created each year. Only about 1000 
of these become widespread. Among these are blends like Brexit (i.e., 
British Exit [of European Union]) and compounds such as crowd-
funding (i.e., raising funds from large groups). Brexit represents an 
example of summative emulation as both phonological and semantic 
features of different words are, literally, altered when combined. 
Crowdfunding, however, would be an example of summative imitation, 
as the phonological and semantic features of the two words remain, 
generally, unchanged when combined. Future research should explore 
whether summative learning similarly extends beyond the artefact do-
main. 

In sum, the present study highlights the social nature of human 
creativity and innovation. The results reported here demonstrate that 
preschoolers and adults alike spontaneously and intuitively invent by 
combining the knowledge and skills of others. We refer to this way of 
innovating as summative learning, with summative imitation, in par-
ticular, playing a critical role. If, as we suspect, summative learning is 
the primary way humans innovate, it might be impossible to completely 
segregate cultural learning from most innovations, including transfor-
mative ones. So, rather than being sui generis, human inventions are, 
broadly, communis generis. 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.cognition.2020.104320. 
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